on solid surfaces because of the rapidity and ease with which the power and the cavity geometry can be con-
trolled, and also the number of times it repeats itself.
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ENERGY TRANSFER TO A PLANE INCOMPRESSIBLE
PISTCN UNDER DETONATION LOADING

S. A. Kinelovskii UDC 534.222.2

Among the problems of explosion-produced acceleration, a special place is occupied by the problem of
the one-dimensional projection of a flat plate or piston. One-dimensional problems are of interest because
they are relatively simple to investigate theoretically. Moreover, one~dimensional projection is a method that
lends itself to direct practical realization and constitutes a simplified model of many actual problems of ex-
plosive propulsion.

The analytic approach to the solution of one~dimensional problems is usually based on the following as-
sumptions: The piston material is incompressible; the shock waves in the explosion products (EP) are weak;
and the EP formally satisfy the equation of state of a perfect gas with adiabatic exponent k=3. The last two
assumptions imply that the characteristics of the equations of motion of the'gas are linear and do not change
their slope on intersection with shock waves moving in the opposite direction (compression waves), and that
throughout the process the pressure and speed of sound in the gas are related by the expression

p=Ad,
where the constant A is determined by the initial thermodynamic state of the EP.

These assumptions have been used to obtain analytic solutions to a number of problems of the maction of
a plane piston propelled by the explosion of a layer of explosive of finite thickness. The situation where a detona-
tion wave impinges on the piston was considered in [1, 2]. A similar problem, with the difference that detona-
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tion is initiated at a rigid fixed wall, was examined in [3]. In [4] two plane pistons separated by the products
of instantaneous detonation of an explosive charge were propelled in opposite directions (as a special case the
mass of one of the pistons was taken equél to zero). The case where detonation is initiated in the plane of the
piston and propagates in the direction of the free end of the charge was studied in [5]. Moreover, in a number
of investigations the process of acceleration of the piston was not actually considered, the limiting velocity of
the piston being found directly from various physical considerations. All this work was reviewed in [6, 7].

We will consider the case where the end of the charge away from the piston is in contact with a vacuum.
The three known methods of piston propulsion under these conditions were described and analyzed in [5]. Below,
various other methods of propulsion of a plane piston are investigated under the assumptions previously spec-
ified, Theproblems are considered in dimensionless form: As the unit of length we shall take the thickness
1y of the layer of explosive, as the unit of velocity the detonation velocity D, as the unit of mass the mass of the
charge (per unit area); time is referred to the quantity 7y/D, and pressure to pD,, where py is the density of
the explosive.

In [5] it was noted that in the various stages of accelerati(_)n of the piston its motion can be described by
two types of solutions. This also holds good for the problems considered below, though the solutions arewritten
in a canonical form somewhat different from that of [5].

In regions where the value of the invariant carried by the characteristics overtaking the piston is constant
over the entire region the solution for the coordinate X ¢) and the velocity U ) of the piston can be written in
the form

X(t) = v + Qla)S;— Var + 8], Ut) = y[1 — 1V o = 5,1, 1)
and in regions where the acceleration of the piston is effected in the rarefaction wavereflected from the piston
the solution has the form .

X(@) = vt — VEYET— 01— a0, U(E) = 71K,— Kyt — VY alB— 1)l @)
The values of the parameters entering into these solutions are determined specifically for each problem. Solu-
tion ) describes inter alia, the concluding phase of acceleration of the piston after the arrival. of the rare-

faction wave from the lefthand free end of the explosive. In this case it continues to hold good as t— and
can be supplemented by the expression for the limiting velocity of the piston

Ve = 7(Ks— 2V EJ0). @)

Retaining the enumeration of the problems adopted in [5], we will consider various, including the known,
methods of prepelling a plane piston of mass M.

1. Detonation Initiated at the Free End of the Charge

The charge is initiated at t =0 in the section x==1. At t=1 the detonation wave reaches the piston &=0)
and is reflected as a shock wave. For t=1 the motion of the piston is described by solution @) with

Y=z=1, a=32QIM), v =1t, Ky=1+1/a, K,=1+ 2a.

- The limiting velocity of the piston is given by expression (3).

2. Detonation Initiated in the Plane of the Piston

The charge is initiated at t =0 in the section x =0. At time t=1 the detonation wave reaches the free end
of the charge & =—1) and generates a centered rarefaction wave whose leading front overtakes the already mov~
ing piston at t =t;. In this problem y=1/2, 4 =8/@Q7M). At 0=<t=t, =3 +9a/4 the motion of the piston is described
by solution (1): 7 =t, 8 =8, =1, and at t=t, by solution @): 7=t—1, x,=1, K; =80a’ + 102 +2)/[a (8 + 9a’], K, =1 +
42 +3a)/ia 8 + 9a)].

3. Instantanecus Detonatiocon

At time £ =0 2 layer of gas (instantaneous detonation products) of unit width is in contact with the lefthand
face of the piston at x=0. The piston is accelerated by the expansion of the compressed gas. At time t=t, the
leading characteristic of the centered rarefaction wave from the free end reaches the piston and the subsequent
acceleration of the piston takes place in the reflected rarefaction wave.

In this problem v=c,=v3/8, a=1/(V6M). At 0=<t=t, the motion isdescribed by solution (1):
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T=0, Sp= S, =1, ¢ = [1 4+ alldeg) ey, .
and at t =t; by solution 2}: 7 =t, x4=1, .
Ky = 8c;(a® + dacy + 23)/1a (a + 4eg)?), Ky=(a® + 8ac, + 8¢2)/[a (a-t4ey)l.
From (3), with allowanée for the values obtained for the constants, for the limiting velocity of the piston we

have
Ue=V3/8(1+12M 1+ 18M2 — 6M V2 + 12M - 9M?)/ (1 + 6M). @)

By means of simple algebra it is possible to show that for problems 1 and 2 the above solutions coincide
with those presented in [5], and for problem 3 with the solution given in [8] and, moreover, wn‘,h an earlier
known solution of the problem [4].*

4., Charge Initiated Simultaneously at the Free End

and in the Plane of the Piston

At t =0 detonation is initiated in the charge from two ends at once: In the plane of the piston & =0) and
at the free end (x=—1). As in problem 1, the detonation wave from the free surface is associated with acentered
rarefaction wave, generated by the expansion of the gaseous EP into the vacuum. At t=1/2 the two detonation
waves meet in the section x = —~1/2. The meeting of the detonation waves generates two shock waves, one travel-
ing towards the piston, the other towards the free end. At time t=t; the former overtakes the piston and is
reflected from it, again as a shockwave, causing further acceleration of the piston.

In this problem y=1/2, a=8/@27TM), t; =2[2Q +ta ~V1IT + 8)/(8—a))*. The first stage (0 =<t=t;) of piston
acceleration is described by solution (1), in exactly the same way as in problem 2. At t=t; the motion of the
piston is described by solution 2):

T=1 r,=1, K1=Fa—‘{i+b2(b?—i)/[2ab—(b—1)‘3]2},
— i

1 Y Y ) —_—
K,= [ {204 & — 1) - 260" — 1)/[2ab — (0 —1)%1}, b = Vat, + 1.

b‘ J—

In Fig. 1 we have plotted the curves, constructed from (1), of U, versus the relative mass of the piston
M for the various problems there and in what follows the number of the curve in the figures corresponds to
the number of the problem). I is clear from Fig. 1 that the U, (M) curve for problem 4 lies more or less half
way between the curves for problems 1 and 2. From the solution of problem 4 it follows that the two~stage
acceleration obtained in this case ensures projection velocities similar to those achieved in problem 1, where
the acceleration conditions are most "severe™ [5]. However, the distance over which the piston is accelerated
to a velocity equal to (0.7-0.9)U, is two to four times greater than in problem 1. In Fig. 2, for two values of
M and various problems, we have reproduced the calculated dependence of piston velocity on path traveled,
from which it is possible to judge the nature of the acceleration (continuous curves: M =0.1; dashed curves
M=0.6).

5. Detonation Initiated within the Charge

At the initial instant £ =0 detonation is initiated in a section at a distance ] from the piston and detonation
waves depart in both directions. In this stage the process is symmetrical about the section x=~—, i.e., is equiv~
alent in each direction to the propagation of a detonation wave from a fixed rigid wall. In this case (see, for
example, [3]) there extends from the wall a region of rest occupying at a given moment of time half the distance
to the detonation front. At time t=7 the righthand detonation wave reaches the piston (x =0), being reflected
from it as a shock wave and initiating the piston acceleration process. At time ty=1—1 the lefthand detonation
wave reaches the free end of the charge (x=-—1) and is reflected from it as a centered rarefaction wave whose
leading front may, in principle, overtake the piston. Inthis problem y=1/2,a =8@7M). The piston acceleration
process depends largely on whether or not the piston is overtaken by the leading characteristic of the "region
of rest® {as in [3]). Inthe case of very light pistons, when a =2/7, i.e., M =<4 /27, this characteristic does not
overtake the piston (nor does any other perturbation). There is then only one piston acceleration stage which
for any t =7 is described by solution @): :

T =t, =1, K= (1 + 4al)/(4al?), K,= (1 + 2al)/(al).

*We note that in [4] there is a misprint in the expresqlon for U, correspoﬁding to @): the coefficient 16 in
the radicand should read 12,
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The limiting velocity of the piston is given by expression (3).

In the case of aheavierpiston @< 2/]) the region of rest and then the centered rarefaction wave overtake
the piston at times t; and t,, respectively, and the piston acceleration process is divided into several stages.
At 1=<t=t; =4]@2~a]) the motion of the piston is described by the above solution for light pistons. Att;=<t=t,=
(azbz—Si)/a, where b=1+8,/a +t,/2, the motion of the piston is described by solution (1):

T =1, S;=4(1 4 2a2)/(2 — al)?, S,= (2 + /(2 — al).
And, finally, at t =t 2t, the motion of the piston is again described by solution 2), where
T=T—lg 2y =1, K;=(Ta+ab¥/1}, K, =1-2a/ty, 7,=1,—1,
These expressions for Ky and K, and eq-uation (3) determine the limiting piston velocity.

The brief existence in the gas of a %fixed wall,” noted above in connection with problem 5, suggested that
for M > 0 the limiting piston velocity might be higher than in problem 1. However, an analysis of the solution
showed that this is not so. On average, the effective gas pressure accelerating the piston is always less in
problem 5 than in problem 1, This is illustrated, in particular, by Fig. 3, where the distribution of the speed
of sound in the gas is shown for both problems: (@) at the time the detonation wave reaches the piston; (b) when
a piston with M=0.1 has traveled a path equal to 0.2 (for problem 5 [=0.5). For other values of ; and M the
quajitative picture is roughly the same.

From the solution of problem 5 it follows that this problem is intermediate with respect to both limiting
velocity and piston acceleration regime between problems 1 and 2. In fact, varying the value of [ gives a set
of piston acceleration regimes ranging from "mild® (7 =0, problem 2) to Psevere® (=1, problem 1).

The analysis of problems 2 and 3 in [5] can be supplemented by a remark that also applies to problem 5.
In these problems, by the time the rarefaction wave arrives from the free end of the charge the piston has been
able to accumulate 95% (M=0.1) to 80% (M=1.4) of its limiting velocity. Thus on the range M<1.4 the motion
of the piston is mainly determined by the initial EP pressure pulse, the contribution of the residual pressure
being fairly small.

6. Instantaneous Detonation across a Gap

At £=0 the interval ~1=<x=0 is occupied by compressed gas, the product of the instantaneous detonation
of the explosive charge. The left-hand edge of the gas is free, and at the right-hand edge there is, in the general
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case, an intermediate piston of mass u (special case: p=0). Inthe section with coordinate x =48; we have the
main piston with mass (M—pu). Both pistons are incompressible, and between them and to the left of the gas

there is a vacuum.

At t>0 the motion of the intermediate piston is described by the solution of problem 3 witha =a =1/
(/6u). Attime t;the intermediate piston reaches the main one. The impact is assumed to be absolutely in~
elastic, and from this condition we find the initial velocity U, of a main piston of mass M; when the pistons
meet a shock wave enters the gas. The mass of the intermediate piston ¢t is assumed to be small enough for
the unloading wave from the free edge not to overtake it before impact. Att=t; the piston overtakes the lead-
ing front of the centered rarefaction wave from the free edge.

In this problem

Y = cp= V38, a = 1/(VEM).
From its solution we have
to== 8y(1 + 2M)cy, Uy= acy/[a(l + W], A = V e/ (aby).

At ty=t=t, the motion of the piston is described by solution (1), where

a {1 — 218 =
tlzto"}_'} [(‘i——_"ﬁ —}~VSI)2——Sljl, T= L1
L
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, Si== ley/(co— Uy P, So= ady/(2¢,) + 15y,
and at t=t; by solution ), where

Ky = (2t — 1, + Sy/a)/t, K, =1+ /ey - 28,/a — ty)/t,.

7. Detonation across a Gap: Detonation Initiated

at End of Charge away from Piston

This problem is similar in formulation to the previous one, differing only with respect to the method of
initiation of the charge. The motion of the intermediate piston of mass u begins with the arrival of the detona-
tion wave ¢ =1) and is described by the solution of problem 1. At time t;, after absolutely inelastic impact,the
main piston of total mass M begins to move with initial velocity U,. As in problem 1, there is only one acceler~
ation stage, which at t=t; is described by solution @):

a =2 32(21M), « = 32/(2Tp), v = ¢, y = zo= 1,
fy =8 28, [1 - VI (1 F 6070,/

Uy=-2 {1~ 2 (5 %)
0Ty (a—‘r2)t1—~oc(1—i—60) ’

. 1 o t ' 2(t -6
F Ol [ ST — S— ¢, = L 2t
: ﬂ[ ‘au+%~%m4’ﬁ2 a[1+%+a@+%—%m :

The formulation of the last two problems is based on the physical fact that introducing a gap increases
the amount of gas whose mass velocity is directed towards the piston and hence may increase the momentum
imparted to the piston by the gas. This principle is confirmed by the solutions obtained, which for both prob~
lems give qualitatively similar results.

In the absence of an intermediate piston (u=0) introducing a gap gives an increase in the final piston
velocity that grows with the gap. For problem 6 this is illustrated by Fig. 4 which shows U, (M) at various
&y for the case u=0: §,=0 (problem 3) - curve 3, §;=1 and §,=2 — curves 6a and 6b, respectively. The corre-
sponding results for problem 7 are presented in Fig. 1: curve 7a — §,=0.5, curve 7b — §,=2. Figure 5 gives
the U, (6y) curves for various cases. Here, the continuous curves relate to problem 7 and the dashed curves
to problem 6; for the upper group of curves (continuous and dashed) M='0.1, for the lower group M =1.0; the
mass of the intermediate piston 4=0 (curves a), 0.1 (curves b) and 0.25 (curves c).

The problems considered show that there are fairly broad possibilities of controlling the projection pro-
cess. Initiating detonation within the charge (problem 5) makes it possible to achieve almost any ¢rom "mild®
oroblem 2 to "severe® (problem 1)) piston acceleration conditions. "I'nitiating the charge from both ends (prob-
lem 4) gives two-stage piston acceleration and ensures a final piston velocity closer to the case represented
by problem 1 under substantially milder acceleration conditions. Conversely, introducing a vacuum gap between
piston and charge makes it possible, in some cases (roblem 7), to o'btai'n more severe acceleration conditions
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and achieve higher piston velocities than in problem 1 or, for about the same velocity, markedly increase the
path on which this velocity is reached. ’

E should be noted that, in actual fact, obtaining higher projection velocities with a gap between piston
and chargeis, generally speaking, problematic. Investigations [9, 10] of the projection of plates across an air
gap did not demonstrate an increase in the final velocity of the plates, and in [9], where the mass of the plate
was fairly large (M=1.35), the final velocity decreased with increase in the gap. A comparison of the results
of these studies and the solutions of the model problems examined above leaves some uncertainty as to the im-
portance of the presence or absence of air in the gap. Experiments [9] showed that there is a marked increase
in plate velocity when the air is evacuated from the gap. If it is assumed that the presence of air in the gap is
to some extent equivalent to the presence of an intermediate piston, then, even when the mass of this piston is
very small, it follows from the solutions of the problems that the velocity of the main piston remains approx-
imately the same as in the absence of a gap, or may even fall somewhat if the gap is small, andbegins to in~
crease only at sufficiently large gaps, when the one~-dimensional process assumed in the problems is rather
difficult to achieve experimentally. With increase in the gap the acceleration time increases, which corre-
sponds qualitatively to the results of [9, 10]. Thus, in this case the experimental results are in qualitative
agreement with the solution of the model problems, if in the latter an attempt is made to take account of the
air in the gap. On the other hand, if we consider the experimental results of [10], for equally thick steel plates,
then from the solution of problem 7 with =0 we find that the calculated ratio of piston velocities with and with-
out a 10-mm gap (§,=0.25) is equal to 1.05 (.e., the calculated velocity increment is in fact small), the calcu-
lated value of the absolute piston velocity being close to the 4.1 km/sec recorded in the experiments. Here a
certain agreement between the results of the experiments and the solution of the problem is achieved without
taking into account the presence of air in the gap. Thus, so far the comparison does not suggest any serious
qualitative contradiction between the solutions of model problems 6 and 7 and the known experimental results,

The author is grateful to Yu. A. Trishin for his interest in the work and useful discussions.
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DETERMINATION OF THE SPALL STRENGTH
FROM MEASURED VALUES OF THE SPECIMEN
FREE-SURFACE VELOCITY

S. A. Novikov and A. V. Chernov UDC 539.412 :539.42

Measurements of the free-surface velocity on reflection of a nonstationary shock wave make it possible
to obtain the data needed to determine the spall strength of a material o, which is calculated from the ex-
pressions [1]

Oo= PoCo(Wo— Wy)/2; 1)
0= poco(Wo"‘ w), @)

where pg is the initial density of the material; Cy, velocity of the plastic waves in it; Wj, maximum of the speci-
men free-surface velocity realized on arrival of the shock wave at that surface; Wy, value at the first mini-
mum of the free-surface velocity time dependence; W, mean velocity of the spall fragment. The values of W,
and Wk are determined from the continuously recorded free-surface velocity measured by the capacitive trans-
ducer method [2]; W can also be determined as the velocity of athin artificial (prepared) spall fragment, i.e.,

a thin foil of the same material fitted tightly to the specimen; W is the usual mean spall velocity.

The literature does not contain any analysis of the limits of applicability of these expressions or the as-
sumptions made in deriving them. We have therefore investigated the nature of the underlying assumptions
and the limits of applicability of the equations derived.

Using the method of characteristics [3], let us consider the flow in a specimen subjected to spalling in
the plane wave formulation. The X—T flow diagram is reproduced in Fig. 1a, where X is the Euler coordinate
and T is time. We assume that the material fails instantaneously in a certain plane the point F onthe X—T
diagram), as soon as the tensile stress in that plane reaches the value oy. This condition is first realized on
the last C-characteristic OF of the centered rarefaction wave LOF formed when the shock wave SO reaches
the free surface. The spall shock propagates from the fracture point F within the spall plate ¢o the right).
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